skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Pan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 7, 2026
  2. Free, publicly-accessible full text available December 7, 2026
  3. Free, publicly-accessible full text available November 4, 2026
  4. Free, publicly-accessible full text available July 28, 2026
  5. Free, publicly-accessible full text available April 28, 2026
  6. Free, publicly-accessible full text available March 1, 2026
  7. Overview of the MatterTune framework, which enables flexible and accurate fine-tuning of pre-trained atomistic foundation models for materials science. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026
  8. Sharing genomic databases is critical to the collaborative research in computational biology. A shared database is more informative than specific genome-wide association studies (GWAS) statistics as it enables do-it-yourself calculations. Genomic databases involve intellectual efforts from the curator and sensitive information of participants, thus in the course of data sharing, the curator (database owner) should be able to prevent unauthorized redistributions and protect genomic data privacy. As it becomes increasingly common for a single database be shared with multiple recipients, the shared genomic database should also be robust against collusion attack, where multiple malicious recipients combine their individual copies to forge a pirated one with the hope that none of them can be traced back. The strong correlation among genomic entries also make the shared database vulnerable to attacks that leverage the public correlation models. In this paper, we assess the robustness of shared genomic database under both collusion and correlation threats. To this end, we first develop a novel genomic database fingerprinting scheme, called Gen-Scope. It achieves both copyright protection (by enabling traceability) and privacy preservation (via local differential privacy) for the shared genomic databases. To defend against collusion attacks, we augment Gen-Scope with a powerful traitor tracing technique, i.e., the Tardos codes. Via experiments using a real-world genomic database, we show that Gen-Scope achieves strong fingerprint robustness, e.g., the fingerprint cannot be compromised even if the attacker changes 45% of the entries in its received fingerprinted copy and colluders will be detected with high probability. Additionally, Gen-Scope outperforms the considered baseline methods. Under the same privacy and copyright guarantees, the accuracy of the fingerprinted genomic database obtained by Gen-Scope is around 10% higher than that achieved by the baseline, and in terms of preservations of GWAS statistics, the consistency of variant-phenotype associations can be about 20% higher. Notably, we also empirically show that Gen-Scope can identify at least one of the colluders even if malicious receipts collude after independent correlation attacks. 
    more » « less
  9. Graph neural networks (GNNs) have shown great potential in learning on graphs, but they are known to perform sub-optimally on link prediction tasks. Existing GNNs are primarily designed to learn node-wise representations and usually fail to capture pairwise relations between target nodes, which proves to be crucial for link prediction. Recent works resort to learning more expressive edge-wise representations by enhancing vanilla GNNs with structural features such as labeling tricks and link prediction heuristics, but they suffer from high computational overhead and limited scalability. To tackle this issue, we propose to learn structural link representations by augmenting the message-passing framework of GNNs with Bloom signatures. Bloom signatures are hashing-based compact encodings of node neighborhoods, which can be efficiently merged to recover various types of edge-wise structural features. We further show that any type of neighborhood overlap-based heuristic can be estimated by a neural network that takes Bloom signatures as input. GNNs with Bloom signatures are provably more expressive than vanilla GNNs and also more scalable than existing edge-wise models. Experimental results on five standard link prediction benchmarks show that our proposed model achieves comparable or better performance than existing edge-wise GNN models while being 3-200 × faster and more memory-efficient for online inference. 
    more » « less